The human homologue of Saccharomyces cerevisiae Gle1p is required for poly(A)+ RNA export.

نویسندگان

  • J L Watkins
  • R Murphy
  • J L Emtage
  • S R Wente
چکیده

The mechanism of mRNA export is a complex issue central to cellular physiology. We characterized previously yeast Gle1p, a protein with a leucine-rich (LR) nuclear export sequence (NES) that is essential for poly(A)+ RNA export in Saccharomyces cerevisiae. To characterize elements of the vertebrate mRNA export pathway, we identified a human homologue of yeast Gle1p and analyzed its function in mammalian cells. hGLE1 encodes a predicted 75-kDa polypeptide with high sequence homology to yeast Gle1p, but hGle1p does not contain a sequence motif matching any of the previously characterized NESs. hGLE1 can complement a yeast gle1 temperature-sensitive export mutant only if a LR-NES is inserted into it. To determine whether hGle1p played a role in nuclear export, anti-hGle1p antibodies were microinjected into HeLa cells. In situ hybridization of injected cells showed that poly(A)+ RNA export was inhibited. In contrast, there was no effect on the nuclear import of a glucocorticoid receptor reporter. We conclude that hGle1p functions in poly(A)+ RNA export, and that human cells facilitate such export with a factor similar to yeast but without a recognizable LR-NES. With hGle1p localized at the nuclear pore complexes, hGle1p is positioned to act at a terminal step in the export of mature RNA messages to the cytoplasm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA

Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...

متن کامل

Dbp5p, a cytosolic RNA helicase, is required for poly(A)+ RNA export.

The DBP5 gene encodes a putative RNA helicase of unknown function in the yeast Saccharomyces cerevisiae. It is shown here that Dbp5p is an ATP-dependent RNA helicase required for polyadenylated [poly(A)+] RNA export. Surprisingly, Dbp5p is present predominantly, if not exclusively, in the cytoplasm, and is highly enriched around the nuclear envelope. This observation raises the possibility that...

متن کامل

The nuclear pore complex and the DEAD box protein Rat8p/Dbp5p have nonessential features which appear to facilitate mRNA export following heat shock.

Nuclear pore complexes (NPCs) play an essential role in RNA export. Nucleoporins required for mRNA export in Saccharomyces cerevisiae are found in the Nup84p and Nup82p subcomplexes of the NPC. The Nup82p subcomplex contains Nup82p, Rat7p/Nup159p, Nsp1p, Gle1p/Rss1p, and Rip1p/Nup42p and is found only on the cytoplasmic face of NPCs. Both Rat7p and Gle1p contain binding sites for Rat8p/Dbp5p, a...

متن کامل

A block to mRNA nuclear export in S. cerevisiae leads to hyperadenylation of transcripts that accumulate at the site of transcription.

Several factors contribute to nuclear mRNA export in Saccharomyces cerevisiae, including Mex67p, Mtr2p, Gle1p, Nup159p, Dbp5p, and Rip1p. Strains carrying mutations in these factors show rapid and dramatic nuclear accumulation of poly(A)(+) RNA. We have characterized two heat shock mRNAs, SSA4 and HSP104, in these mutant backgrounds; each transcript concentrates in a single intranuclear focus. ...

متن کامل

The RNA export factor Gle1p is located on the cytoplasmic fibrils of the NPC and physically interacts with the FG-nucleoporin Rip1p, the DEAD-box protein Rat8p/Dbp5p and a new protein Ymr 255p.

Gle1p is an essential, nuclear pore complex (NPC)-associated RNA export factor. In a screen for high copy suppressors of a GLE1 mutant strain, we identified the FG-nucleoporin Rip1p and the DEAD-box protein Rat8p/Dbp5p, both of which have roles in RNA export; we also found Ymr255p/Gfd1p, a novel inessential protein. All three high copy suppressors interact with the C-terminal domain of Gle1p; i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 12  شماره 

صفحات  -

تاریخ انتشار 1998